
INTRODUCTION

The ability to monitor patient response to
osteoporosis therapy with DXA depends on
long-term in vivo precision and the expected
treatment response to therapy at a particular
region.  

The technician’s ability to reposition the patient
and consistency in analysis methods is widely
regarded as one of the major sources of error.1

The in vivo short-term precision, as measured
by a precision study where patients get off and
then back onto the instrument, is sometimes
used to determine the Least Significant Change
(LSC) that is detectable. The International
Society of Clinical Densitometry (ISCD)
recommends that each technologist perform an
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ABSTRACT

The ability to monitor patient response to osteoporosis therapy with DXA depends on long-term in vivo precision and
expected treatment response to therapy at a particular region.  

A review of recent peer-reviewed literature (57 studies) of short-term in vivo coefficient of variations (CV’s) found a
statistically significant difference between manufacturers for the AP spine and femoral neck, but not for the total hip.
The average CV of the three manufacturers at the AP spine was 1.08% for Hologic, 1.22% for GE/Lunar, and 1.58%
for Norland. At the femoral neck the average CV was 1.50% for Hologic, 1.97% for GE/Lunar, and 2.30% for
Norland.

Multiple studies have shown that the spine has two to three times the expected treatment response to osteoporosis
therapy compared to the total hip or femoral neck, requiring hip precision to be two to three times better than AP spine
to be useful for monitoring. However, when the peer reviewed literature was examined, there was no statistically
significant differences between the CV’s of the AP spine and total hip (mean CV’s were 1.2% and 1.3%, respectively).

While short-term in vivo precision is often reported because it is easier to ascertain, it is long-term precision that is
crucial for patient monitoring. While not a measure of long-term precision, seven studies (three using Hologic
instruments, four using GE/Lunar instruments) did look at precision with repeat measurement done at least an hour
later. These assessments, which more closely simulate clinical use, had an average CV at the spine of 1.2% for Hologic
and 1.7% for GE/Lunar.  

Hangartner monitored long-term precision on phantoms for three years on two Hologic and two GE/Lunar
densitometers. All four instruments passed QC during the entire monitoring period. The total change of the two
Hologic instruments was 0.01% and 0.13% during the three years, both of which are clinically insignificant. The two
GE/Lunar instruments changed by 1.5% and -4.5% during the same three year time period, both clinically significant
differences even though both scanners were within the manufacturer’s allowed tolerances.

The long-term precision of Hologic instruments was also demonstrated in a pharmaceutical phase three study, where
the average CV on phantoms was less than 0.5% for the thirty-four Hologic densitometers over a period of six years.

We conclude that the peer reviewed literature indicates that there are manufacturer differences in precision, and that
these differences may be even greater for the clinically significant long-term precision than the less relevant short-term
precision that is typically reported upon.

Figure 1: AP spine CV (%) by manufacturer, diamonds indicate group mean

 



in vivo precision study to determine the LSC
for that technologist.2

While technologist performance is a significant
contributor to precision, other sources of error
may be of equal or greater importance in
monitoring patients with DXA. This paper will
review the literature and technology that relates
to monitoring patients in a clinical
environment. We will examine some of the
recent peer-reviewed literature to determine if
short-term precision is manufacturer
dependent. We will examine in more detail
whether short-term precision values, as
measured by having a patient get on and off the
table, are actually representative of the long-
term precision, which is the relevant precision
value for patient monitoring. And finally, we
will look at the allowed and actual long-term
drift of different manufacturer’s densitometers
and its effect on long-term precision. 

SHORT-TERM PRECISION

For the 2005 Position Development Conference, the ISCD
Committee on Standards in Bone Measurements was asked
to address the question of what is the maximum CV that
would be acceptable at a given site; a CV value exceeding the
maximum would indicate a need for technologist retraining.
To address that question, the committee searched recent
articles in Calcified Tissue International, Journal of Bone and
Metabolism, Journal of Bone and Mineral Research, Journal of
Clinical Densitometry, and Osteoporosis International.
Precision is often reported in the “Material and Methods”
section of articles in these journals without reference to pre-
cision in the keywords or abstract, so the journal’s articles
were reviewed by eye. Studies that reported in vitro precision
studies or in vivo studies with very few degrees of freedom
were excluded. Fifty-seven studies were identified.3-59 In most
of the studies precision was not the primary outcome vari-
able, thus reducing, but not necessarily eliminating, report-
ing bias. Often times, there was very little reported other
than the manufacturer of the instrument, its model and the

CV. Because of a lack of consistent information regarding
sample size, population characteristics, etc., it was necessary
to summarize the data using descriptive statistics, instead of
pooling the data.60  Nevertheless, because of the large num-
ber of studies, the descriptive statistics were enlightening
and was the basis for answering the question posed to the
ISCD committee concerning the maximum CV that is
acceptable. We will use this same set of studies to consider
other questions regarding precision. 

The studies in the review reported a relatively wide range of
precision (see Figures 1 and 2). The median CV at the spine,
total hip, and femoral neck for all studies was 1.10%, 1.20%
and 1.85%, respectively. As expected, there was no clear
trend of CV versus sample size. Though there was large vari-
ation in reported CV’s from individual studies, examination
using the statistical test of Wilcoxon / Kruskal-Wallis
revealed significant differences at the 95% confidence level
in CVs among manufacturers for AP spine and femoral neck
(see Table 1) but not for the total hip61.  

There were too few studies to reach statistical significance
between any two particular models of densitometer.

Region All manufacturers Hologic GE / Lunar Norland p value

AP spine 1.17% 1.08% 1.22% 1.58% 0.02

Femoral neck 1.85% 1.50% 1.97% 2.30% 0.03

Table 1: Average CV for different manufacturer’s from peer reviewed studies 3-59 where the Wilcoxon/ 
Kruskal-Wallis test revealed a statistically significant dependence of the mean precision by manufacturer.

Figure 2: Femoral neck CV (%) by manufacturer, diamonds indicate 
group mean

 



However, at the AP spine, the mean CV for the twelve stud-
ies which used Hologic modern fan-beams (such as the
QDR-4500, Delphi and Discovery) was 1.0%, while for six
studies that used  the latest GE/Lunar fan beam instruments
(various models of Prodigy) the mean CV was 1.3%. These
results are consistent with the results for all models of those
respective manufacturers, which are reported in Table 1.

Most, but not all, of the reported studies measured in vivo
precision by having the patient get off the table, and then
immediately back onto the table. Though widely performed,
this type of study is not necessarily a good estimate of the
clinically relevant LSC. There were a few recent studies4, 8, 16,

28, 31 (three Hologic and three GE/Lunar) in the survey that
measured precision using a more realistic model where the
first and second measurements were performed on a differ-
ent day. The mean CV’s at the AP spine for the three
Hologic studies that used this more robust estimate were
1.1%, 1.4% and 1.1%, very close to the average of all
Hologic studies of 1.08%. For the three GE/Lunar studies
(one paper28 measured long-term precision on both the DPX
and Prodigy), the mean CV’s at the AP spine were 1.4%,
1.5% and 1.9%, compared with the average of all GE/Lunar
studies of 1.22%.

Since the survey by the ISCD subcommittee was completed,
a large study (n=222) on precision performed in the Fall of
2004 using a Prodigy has been published.62 This study meas-
ured precision with one hour to seven days between repeat
measurements and found CV’s for the AP spine of 2.0%.
Again, this value is higher than the majority of somewhat
artificial precision estimates performed on GE/Lunar instru-
ments where the repeat measurement was done immediate-
ly after the first measurement.

Taken as a whole, there is the suggestion that precision may
be worse when measurements are done in a more realistic
manner (i.e. on different days), and that the size of the effect
may be manufacturer dependent. To test this hypothesis,
well designed studies which measure the precision using the
same day method versus precision estimates based on meas-
urements performed on different days (preferably one to two
weeks separated) are needed using modern instruments and
analysis methods.

SITE SELECTION FOR MONITORING

There has been some discussion about the best anatomical
site for monitoring response to therapy. The ISCD recom-

Figure 3: Long-term precision comparison, adapted from Hangartner67



mends the AP spine as the first choice, since treatment
effects are larger at this site.63 However, if the total hip had
significantly better precision than the AP spine, this might
be a reason to monitor at this site. When the recent peer
reviewed literature was examined, there was no statistically
significant difference in AP spine or total hip precision; the
mean CV was 1.2% for the spine and 1.3% for the total hip.  

Some have advocated “dual hip” exams to improve the abil-
ity to monitor changes in BMD. This is curious, since the
expected change in treatment is about two to three times
larger at the AP spine vs. the total hip.64, 65 Measuring both
hips, is expected to reduce the precision error by 30%. Since
more change is expected at the spine and the precision of the
spine and hip measurements are approximately the same,
one could monitor change much more effectively by meas-
uring the spine twice instead of measuring both hips.
Another common justification for measuring both hips is for
improved fracture prediction, but Blake et. al.66 have shown
that measuring both hips does not improve fracture predic-
tion by a meaningful amount (the relative risk would go
only from 2.60 to 2.63) because the two measurements are
highly correlated. As Blake points out, to improve fracture
risk prediction above a single BMD measurement, one must
measure a quantity that is largely independent of BMD,
such as prevalent vertebral fractures or biochemical markers.

LONG-TERM PRECISION

There are three important factors that are not captured in
precision studies where the repeat measurement is per-
formed immediately after the first. One of these is related to
the human element; the other two are instrument dependent. 

With respect to the human element, it seems highly proba-
ble that the technologist will more closely reproduce patient
positioning if the repeat exams immediately follow one
another, versus allowing several days or weeks between
repeat exams. The patient learns what to expect, is wearing
the same cloths providing visual clues, the technologist
remembers what she has just done, etc. In a true clinical fol-
low-up measurement a year later, none of these things are
true.

Regarding possible manufacturer dependence, first, whenev-
er an instrument has a daily or weekly calibration (as in the
case of GE/Lunar and Norland), then the “on and off the
table” experiment is fundamentally different from the base-
line/follow-up measurement. This is because the
baseline/follow-up measurement will be using a different
instrument calibration, while the “on and off the table” uses
the same instrument calibration.  For Hologic instruments
the situation is different because each scan is calibrated with
the internal reference wheel. Thus the “on and off the table”
experiment has two calibrations, exactly as in the
baseline/follow-up measurement. Therefore, one may find
that repeat measurements on separate days may have a man-

ufacturer dependent difference because of the different 
calibration methodologies.

Finally, in clinical medicine, the allowed instrument drift is
critically important. Long-term drift is often monitored in
research studies and final results are corrected for drifts
above a predetermined amount (sometimes 1%, though
some studies choose to correct smaller differences that are
statistically significant). However, in clinical practice, most
users do not correct for instrumental drift, but simply
assume that a regular QC program will notify them if the
instrumental drift is “significant”, unaware that different
manufacturer’s have different allowed ranges for “acceptable”
drift. This assumption was critically examined by Prof.
Hangartner67 over a three year period on two Delphi and
two Prodigy DXA systems.

In Hangartner’s experiment, all four instruments performed
“within the manufacturer’s specifications” during the study
period. Hangartner used a specially designed phantom to
monitor drift. He found that the two Prodigy’s had calibra-
tion changes associated with service visits of 1.5% on
Prodigy A and -4.5% on Prodigy B (see Figure 3). On the
two Hologic instruments, he found that Delphi A main-
tained its stability, changing only 0.01% over the three year
period. Delphi B changed only 0.13%; both changes were
clinically insignificant. Examination of the machine specifi-
cations provides some insight into these disparate results.
On the Prodigy, the instrument is allowed to have a result
that varies ± 3% from the known phantom value (see Figure

Figure 5: GE/Lunar Spine Phantom

Figure 4: Hologic Internal Reference Wheel and 
Anthropomorphic Spine Phantom



5). Thus Prodigy B started off at the high end of the allowed
range, and moved over time to the low end of the allowed
range. The allowed range on Hologic densitometers is ±
1.5%, or one-half the allowed range of Prodigy. Since LSC’s
measured by the on and off the table experiments recom-
mended by the ISCD are typically only 2% – 4%, undetected
long-term instrument drift represents a major under-appre-
ciated problem in clinical practice.

The rock solid stability of the Hologic instruments is not the
exception. In research studies, where long-term precision is
critically monitored, Hologic modern fan-beams have an
excellent record of long-term precision. For example, Perron
et. al. reported on the long-term precision of thirty-four (34)
Hologic modern fan-beam instruments over six years. They
conclude that “the stability of all the QDR-4500 over 6
years remains very good with an average CV<0.5%”.68

Hologic has recognized from the start that the clinically rel-
evant precision is long-term precision. This is why from the
beginning Hologic incorporated the internal reference
wheel, the anthropomorphic spine phantom (see Figure 4)
and strict daily QC protocols with the tightest BMD QC
limits in the industry.

CONCLUSIONS

In conclusion, values obtained in short-term precision stud-
ies vary widely. However, taken as a whole, this review of
fifty-seven studies in the recent peer-reviewed literature
showed a statistically significant difference by manufacturer
for the AP spine and femoral neck precision, with Hologic
having the best short-term precision among manufacturers.
As discussed, these short-term precision studies may not be
reflective of the true Least Significant Change that is
detectable over a one to two year period because there are
manufacturer differences in instrument stability. Hologic’s
required stability is ± 1.5% and GE/Lunar’s  is ± 3.0% on
manufacturer provided spine phantoms. In the Hangartner
study, the actual BMD stability of the two Hologic systems
(0.01% and 0.13%) exceeded the manufacturer’s specifica-
tions, where as both GE/Lunar systems were considerably
less stable (1.5% and – 4.5%). Further, the GE/Lunar
instruments drifted amounts that are clinically significant,
even though both densitometers were working within the
manufacturer specifications. The large drifts documented in
both Prodigy’s significantly compromise the ability to mon-
itor patients in a clinical setting.
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